Learn how climate change affects plant life with AMC Mountain Watch

Track phenology events in Appalachian mountains and contribute to climate change research with Mountain Watch!

Want more spring citizen science? We’ve got you covered through April showers and May flowers.

There is nothing more rewarding than taking in the view from above tree-line. A challenging hike always seems like a distant memory after gazing upon the landscape below, especially if it’s the White Mountains of NH. Now, the Appalachian Mountain Club (AMC) is calling on visitors of these Northeastern peaks to help them observe plant life through the Mountain Watch program. This citizen science initiative aims to investigate how the life cycles of alpine plants are affected by climate change.

11330421855_3a7d7f08d8_o
View from the Franconia Ridge Trail, one of the alpine sites on the Mountain Watch list.

To do this, Mountain Watch asks participants to record plant phenology, which is the study of how plant life cycle events, such as flowering or producing fruit, are affected by changes in environmental conditions, including temperature and precipitation. Plant life cycles are very sensitive to small variations, so even subtle changes across seasons can be observed. For example, a dry summer might cause the leaves on trees to change color earlier in the fall. When recorded over many years, these phenology records can start to uncover long term trends in the climate and help scientists to model the effects of climate change in a certain region.

Diapensia, one of the sensitive alpine flowers being monitored.

Since the AMC is based in the Northeastern portion of the Appalachian Mountains, the focus of Mountain Watch is on alpine plants that are found exclusively at high elevations in the north. The program is targeting these alpine species specifically because they have adapted to survive only in harsh, low temperature conditions and cannot thrive in warmer climates. As such, they are especially sensitive to climate change. Georgia Murray, a scientist a the AMC, describes that the Mountain Watch observations help to make up “really rich mountain data sets” that, paired with temperature observations from the Mt. Washington observatory, help to understand how climate change has affected the environment in the Northeast.

This year, the Mountain Watch program is joining an exciting new collaboration called A.T. Seasons (A.T. for Appalachian Trail), which is working to develop sites for citizen scientists to collect plant phenology data all along the Appalachian Trail. Mountain Watch joined this project to get more people involved, and as Georgia explains, to “utilize the A.T. as a north-south corridor in understanding phenology in climate change.” The goal of A.T. Seasons is to monitor the same type of plants along the whole Appalachian Trail to better understand the interplay of climate and phenology across geographical regions, as well as in relation to climate change. As alpine species only grow on the northern section of the A.T., they will not be included in this portion of the program; however, Georgia notes that Mountain Watch will still maintain the “alpine focus that is unique to the AMC and our region in the northeast” in addition to the A.T. Seasons plant list.

The incorporation of A.T. Seasons into the Mountain Watch program allows more citizen scientists to be involved, as the new initiative provides options for different levels of commitment – there is an Android app for easily making one-time measurements and more in-depth training courses for people who want to make long-term observations. The alpine flower portion of the Mountain Watch program does require more “dedicated volunteers,” as Georgia says, who can commit to regularly visiting the remote mountain sites, but there are many educational tools on the website for those who just want to learn more.

So grab those hiking boots and get outdoors! Spring and summer are the best times to observe plant phenology, and the sweeping views of the White Mountains await.

Top image: Sean O’Brien via Flickr

Bottom image: AMC Mountain Watch 


Emily Lewis is a PhD candidate in chemistry at Tufts University, where she analyzes industrially important catalysts on the nanoscale. She received her BS and MS degrees from Northeastern University, and her thesis work examined fuel cell catalysts under real operating conditions. She loves learning about energy and the environment, exploring science communication, and investigating the intersection of these topics with the policy world. When she’s not writing or in the lab, you’ll probably spot Emily at the summit of one of the White Mountains in NH. Follow her: @lewisbase, emilyannelewis.com

 

Categories: Biology, Citizen Science, Climate & Weather, Ecology & Environment, Geology & Earth Sciences, Nature & Outdoors

Tags: , , , , , ,