Archive for the ‘Geology & Earth Sciences’ Category

Learn how climate change affects plant life with AMC Mountain Watch

By May 19th, 2014 at 2:47 pm | Comment 1

Track phenology events in Appalachian mountains and contribute to climate change research with Mountain Watch!

Want more spring citizen science? We’ve got you covered through April showers and May flowers.

There is nothing more rewarding than taking in the view from above tree-line. A challenging hike always seems like a distant memory after gazing upon the landscape below, especially if it’s the White Mountains of NH. Now, the Appalachian Mountain Club (AMC) is calling on visitors of these Northeastern peaks to help them observe plant life through the Mountain Watch program. This citizen science initiative aims to investigate how the life cycles of alpine plants are affected by climate change.

11330421855_3a7d7f08d8_o

View from the Franconia Ridge Trail, one of the alpine sites on the Mountain Watch list.

To do this, Mountain Watch asks participants to record plant phenology, which is the study of how plant life cycle events, such as flowering or producing fruit, are affected by changes in environmental conditions, including temperature and precipitation. Plant life cycles are very sensitive to small variations, so even subtle changes across seasons can be observed. For example, a dry summer might cause the leaves on trees to change color earlier in the fall. When recorded over many years, these phenology records can start to uncover long term trends in the climate and help scientists to model the effects of climate change in a certain region.

Diapensia, one of the sensitive alpine flowers being monitored.

Since the AMC is based in the Northeastern portion of the Appalachian Mountains, the focus of Mountain Watch is on alpine plants that are found exclusively at high elevations in the north. The program is targeting these alpine species specifically because they have adapted to survive only in harsh, low temperature conditions and cannot thrive in warmer climates. As such, they are especially sensitive to climate change. Georgia Murray, a scientist a the AMC, describes that the Mountain Watch observations help to make up “really rich mountain data sets” that, paired with temperature observations from the Mt. Washington observatory, help to understand how climate change has affected the environment in the Northeast.

This year, the Mountain Watch program is joining an exciting new collaboration called A.T. Seasons (A.T. for Appalachian Trail), which is working to develop sites for citizen scientists to collect plant phenology data all along the Appalachian Trail. Mountain Watch joined this project to get more people involved, and as Georgia explains, to “utilize the A.T. as a north-south corridor in understanding phenology in climate change.” The goal of A.T. Seasons is to monitor the same type of plants along the whole Appalachian Trail to better understand the interplay of climate and phenology across geographical regions, as well as in relation to climate change. As alpine species only grow on the northern section of the A.T., they will not be included in this portion of the program; however, Georgia notes that Mountain Watch will still maintain the “alpine focus that is unique to the AMC and our region in the northeast” in addition to the A.T. Seasons plant list.

The incorporation of A.T. Seasons into the Mountain Watch program allows more citizen scientists to be involved, as the new initiative provides options for different levels of commitment – there is an Android app for easily making one-time measurements and more in-depth training courses for people who want to make long-term observations. The alpine flower portion of the Mountain Watch program does require more “dedicated volunteers,” as Georgia says, who can commit to regularly visiting the remote mountain sites, but there are many educational tools on the website for those who just want to learn more.

So grab those hiking boots and get outdoors! Spring and summer are the best times to observe plant phenology, and the sweeping views of the White Mountains await.

Top image: Sean O’Brien via Flickr

Bottom image: AMC Mountain Watch 


Emily Lewis is a PhD candidate in chemistry at Tufts University, where she analyzes industrially important catalysts on the nanoscale. She received her BS and MS degrees from Northeastern University, and her thesis work examined fuel cell catalysts under real operating conditions. She loves learning about energy and the environment, exploring science communication, and investigating the intersection of these topics with the policy world. When she’s not writing or in the lab, you’ll probably spot Emily at the summit of one of the White Mountains in NH. Follow her: @lewisbase, emilyannelewis.com

 

Getting flashed by the Moon?

By March 3rd, 2014 at 1:17 pm | Comment

Monitor the rates and sizes of meteoroids striking the moon with the Lunar Impact Monitoring project.

Citizen science after hours…here are some citizen science projects you can do at night.

Moon-craters

By now you’ve probably seen Gravity, and maybe you figured real astronauts don’t have to worry about projectiles, flying debris, or explosions. After all, the stars seem so calm from Earth, and the only turbulence we see on the surface of the moon are the waves breaking its reflection over the river. But sometimes, if you look long enough (even with the naked eye), you can spot a meteorite hurtling into Earth’s atmosphere with a flash. Approximately 73,000 lbs, about two large truckloads, of rock streaks through the Earth’s atmosphere each day. Earth’s atmosphere causes the meteorites to burn out before they do any damage, but the Moon has no protection against meteorites and neither do spacecraft or astronauts who might be working on or near the Moon. Potential for catastrophe? Worthy of little globes of Sandra Bullock tears? I’d say so.

To understand what risk these meteorites pose to spacecraft and their crews working in the lunar environment, astronauts have to know how often meteorites impact the moon, what size, and with how much force. Astronomers have been able to see the meteorites hitting the Moon for years – it doesn’t take much. When a meteorite strikes the Moon, it explodes in a flash that can be caught with only an 8 to 14 inch telescope and a clear sky. Since 2006, NASA astronomers like Rob Suggs say they “point telescopes at the night portion of the moon and record video from sensitive cameras,” which they analyze later. Simple as that, the Lunar Impact Monitoring Project at NASA was born.

Image courtesy of George Varros. A lunar impact flash on the Moon from March 13, 2008.

Suggs says NASA began seeking out the help of citizen scientists immediately: “Many amateur astronomers have equipment similar to what we use.” By having more eyes on the moon, NASA can greatly increase the likelihood of seeing a lunar impact flash. The scientists want to be able to see as much as possible but sometimes, Suggs says, “we are clouded out or the Moon has set at our observatories while the Moon may still be visible from an amateur astronomer’s backyard.”

And sometimes amateur astronomers are the ones who end up seeing the impact. George Varros, a citizen scientist volunteer who has been involved with the Lunar Impact Monitoring Project since 2006, has already caught several impacts on camera. Varros first got involved with the project in part because of a lifelong love of astronomy, but he also says he recognized NASA was asking the amateur astronomy community to do “solid science, and it was not very difficult to do.” Even so, Varros says that the work “does take an effort and several hours, several nights, of imaging might elapse before you record [an impact],” but the wait is well worth it. Capturing an image, he says, is the best part. Already, the project has been able to catch the birth of a new crater and 300 flashes.

Once an image is caught on tape, NASA scientists can try to correlate the impact with a meteor shower they know about and use that information to learn the speed and size of the meteorite.  Often, these meteorite can fly through space eighty times faster than the fastest jet on Earth. So far, meteorites haven’t been known to destroy any spacecraft, but some people say that some in-space anomalies – bumps and bruises – have been from meteorites.

Whatever violence the rocks are causing up in space, lunar monitoring is still a peaceful experience from Earth. Suggs says it’s been thrilling to see impacts from the project and “seeing the new crater that Lunar Reconnaissance Orbiter detected from our March 17, 2013, impact was extremely exciting and satisfying.” But his favorite part of the project is still sitting out and watching the sky. Suggs says, “I enjoy the observing: just me and the telescopes and the Moon in the middle of the night.”

Images: Wikimedia (top), courtesy of George Varros (GIF)


Angus Chen is the managing editor for the SciStarter Blog network which includes the Discover magazineCitizen Science Salon” blog and the Public Library of Science’s Cit Sci blog. He’s also a freelance reporter and producer at WNYC Public Radio on “The Takeaway” with Public Radio International and the NY Times. You can also read his work with Science magazine. He was once a scientist studying geology and ecology, but now spends his days typing and scribbling and sketching furiously. 

Using the Quake-Catcher Network Citizen Science Project to Meet Common Core and Next Generation Teaching Standards

By February 24th, 2014 at 2:54 pm | Comment

Citizen Science in the Classroom: Quake-Catcher Network

Quake-Catcher Network Citizen Science Project Meeting Common Core and Next Generation Teaching Standards

QCN screen shot 1

Quake-Catcher Network Imaging Map

Grades:

K-12

Description:

Quake-Catcher Network (QCN) is a citizen science project that uses internet and sensors (subsidized or free for K-12 classrooms) to connect schools and other entities to an earthquake monitoring network. It is hosted through Stanford University (along with UC Berkeley) and is supported by the National Science Foundation, US Geological Survey, the Incorporated Research, UPS, and O Navi (a low cost sensor development company).  The idea of this project is to create earthquake and seismology awareness, as well as recording data though a “distributed computing network.” This means that your classroom’s computer will be linked to a network of other computers relaying information back to the central hub monitoring for earthquakes.

For this project you need to be at least fairly tech savvy and able to understand how to download drivers and software, and able to install programs on your computer. The initial investment of time will be setting up everything so that it syncs with the BOINC seismology network. I would suggest at least a good solid hour or possibly two. You may also have to go through your IT department to be sure that there are no firewall issues and that you have permission to add the software required.  However, the investment is well worth the hand-on science aspect of this project and the feeling of connection that students may gain by participating in a global program.

The nice thing about this project is that it provides teacher support, lesson plans, and multimedia materials to help get you started. This type of citizen science, and the lesson plans provided, tends to run towards middle to high school content but it can be used by elementary schools as well.

Materials You’ll Need:

I’m going to spend a bit more time on the materials section, because this project is more tech centered than others. The QCN has different way that your classroom can participate in this project, either through seismic software sensors that are already in your mobile device or laptop (many Macs have this) or by sending you a $5 subsidized sensor. There is an option for a free sensor, but you must be in what they deem a “high risk” area, which I take to mean on a fault line or high activity area. Otherwise, you can mail in a request form for up to 3 sensors for $5 each. The nice thing is that for low income schools you can get a “loan” sensor and there is a free sensor program for schools that are Title1.

qcn sensor

QCN Sensor.

Sensors require that you have a USB capable device and you can dedicate one USB port to the project. The software that you download comes in a variety of formats for Windows and Mac. You will also need a location on the floor that will not be disturbed by students.  Your sensor will be connecting to the network using a software program called BOINC (Berkeley Open Infrastructure Networking Computing). It was originally used for the SETI program, but now it’s used for computer sourcing projects world-wide.

Some of the lesson plans on the QCN site also require that you have a mobile device or computer with an accelerometer. This is built into most smart phones though you may need to download an app. You may also borrow one from QCN. This is not required to participate in the program.

  • Computer with internet access.
  • QCN network sensor.
  • USB Drive that can be dedicated to this project.
  • Permission to download drivers and BOINC software to the computer.
  • Duct Tape and glue
  • Printer

Why This Citizen Science Project is a Strong Candidate for the Classroom:

  • Even though the program has some tech to it, it can be set up fairly easily.
  • There are many strong lesson plans free online.
  • Technology from this project supports STEM curriculum.
  • Teachers can run simulations and scenarios for students in the classroom.
  • This project incorporates maps, graphs, and technology.

Teaching Materials:

The lessons and activities provided by QCN can be found on their website. These tell you exactly what grade they are for and there are variations of some activities for different grade levels, K-12.

Online Safety for Children

The set up for QCN is done by an adult, and students do not need to enter information or data. Teachers will need to create a BOINC account with an e-mail and password. There are options to provide data about where you sensor is located. The more specific (long/lat) the better because this helps with their data collection. However, the BOINC software allows you choose to provide very specific or very general location information if you’re worried about privacy.

Read the rest of this entry »

12 Days of Christmas-y Citizen Science

By December 12th, 2013 at 10:56 am | Comment

Tis the season for citizen science!

Make sure you’re on Santa’s “nice list” this year. Lend your hands, hearts and brains to science during these 12 days leading up to Christmas!

On the 1st day of Christmas, the Alliance for Saving Threatened Forests gave to me:

A chance to monitor the invasive insects that attack both hemlocks and Fraser firs (the most popular Christmas Tree in North America).

On the 2nd day of Christmas, Audubon gave to me:

Two turtle doves that I spotted during the Christmas Bird Count, which takes place December 14 through January 5 each year! The count is the world’s longest running citizen science project.

On the 3rd day of Christmas, the Smithsonian Environmental Research Center gave to me:

Three Chinese mitten hens (female crabs) on the east coast of the United States. Mitten Crab Watch needs our help to determine the current distribution status of the mitten crab in the region.

On the 4th day of Christmas, Audubon gave to me:

Four or more calling birds that I “adopted” for the holidays. Through December 31st, anyone can adopt a bird for someone special, and Audubon will send them a personalized holiday card showcasing the adoption and an Audubon gift membership.

On the 5th day of Christmas, geographers at Wilfrid Laurier University gave to me:

Five frozen skating rinks! This winter, you can track climate change through backyard skating rinks by taking part in Rink Watch. Just put in the location of your backyard rink on a map and record days you can skate.

On the 6th of Christmas, Seattle Audubon Society gave to me:

A chance to help seabird researchers create a snapshot of geese density on more than three square miles of near-shore saltwater habitat.

On the 7th day of Christmas, the Swan Society of the University of Melbourne gave to me: 

The MySwan project to report sightings of tagged black swans around the world. After you submit your sighting, you’ll get an instant report about the swan, with interesting information about its history and recent movements.

On the 8th day of Christmas, Zooniverse gave to me:

The Milky Way Project, a chance to help scientists study our galaxy, as well as the Milky Way advent calendar and even Milky Way tree ornaments!

On the 9th day of Christmas, the European Space Agency gave to me:

Citizen scientists doing our favorite dance: the robot! By flying a Parrot AR drone in virtual space, you can help create new robotic capabilities for space probes and contribute to future space exploration.

On the 10th day of Christmas, Computer Science Education Week gave to me:

Ten million students leaping into the world of computer programming. During the week of Dec. 9-15, students will take part in the Hour of Code. But it doesn’t stop there – tutorials are available all year round!

On the 11th day of Christmas, the University of Washington gave to me:

SingAboutScience, a searchable database where you can find content-rich songs on specific scientific and mathematical topics. These singers sure have some pipes!

On the 12th day of Christmas, New York’s Department of Environmental Conservation gave to me:

The Ruffed Grouse Drumming Survey to help hunters survey the population of ruffed grouse during breeding season.

If you’re fortunate to experience a white Christmas, consider sending your snow depth measurements to cryosphere researchers at the University of Waterloo’s Snow Tweets project. They want to use your real-time measurements to help calibrate the accuracy of satellite instruments currently measuring snow precipitation.

Happy holidays from the SciStarter team!

Winter + Citizen Scientists + Twitter = Snowtweets!

By December 8th, 2013 at 2:29 am | Comment

Winter is here! Check out more winter weather themed citizen science projects at Scistarter.

#snowtweets project

#snowtweets – Citizen scientists for cryosphere research

You know what the atmosphere is. But have you heard of the cryosphere? No, it’s not a giant frozen ice-cream sphere, if that’s what you’re thinking. (That’s not what you were thinking? Never mind then!) The cryosphere, as Wikipedia most sagely teaches us, is the portion of the earth’s surface where water is in solid form (snow, ice, etc). Now, if you’re planning to drive home the day before Christmas, you will probably check out how much snow there is on the road on the weather channel or weather.com. These outlets get their snow depth data from government sources such as the NOAA’s National Weather Service or the Canadian Meteorological Centre (CMC). Apart from the safety of your road trip, there are many more uses to knowing what the snow cover will be such as predicting how much water rivers will receive from snowmelt. However, because the data comes from simulated models which use a combination of ground and satellite based snow measurements, their accuracy needs to be tested.

That is what the cryosphere research team at the University of Waterloo is trying to do with SnowTweets. And they want you to help them. Using just a ruler, a Twitter account and a few minutes of your time, you can contribute to cryosphere research. By crowdsourcing tweets about snow depths at various locations, the team hopes to collect frequent and high resolution data and match it with the meteorological data from NOAA & CMC. So how do you get started? Simple!

Make your own snow ruler!

Make your own snow ruler! Image credit: www.makingfriends.com

  1. Get a twitter account if you don’t already have one.
  2. Get a ruler or make your own (like the snowman themed one pictured on the right). Put on your winter gear!
  3. Step out and find one or more patches of undisturbed snow. If you can find a place away from buildings like a nearby park your measurement is more likely to be accurate. But if you can’t don’t worry. Your backyard will do just fine!
  4. Take a few depth measurements to see how it varies in different regions. Then, take the most representative measurement. For example if you measured 3”, 4”, 8”, 4”, 5”and 3” the most representative reading is probably 4” (The 8” would be an outlier). Remember that no snow measurements (i.e. 0 inches) are important to tweet out too!
  5. Tweet the measurement using the #snowtweets along with your zip code or latitude and longitude like this

#snowtweets <snow depth in cm, in or ft> at <zip code or latitude, longitude>

For example #snowtweets 5.0 in. at 20500 or #snowtweets 8.3 cm at 41.500, -120.750

If you’re outside North America, be sure to throw in your country name as well along with the zip code (e.g. #snowtweets 2 cm at 102-8166 Japan). Here’s my snowtweet

 

  1. Tweet many times a day as you want. Even better, if you’re going on a winter road trip, take a ruler, measure and tweet wherever you stop! Remember, more data = better!
  2. Give it a few minutes. The data will be processed by their automated system and will show up on Snowbird, the special visualization tool that the team has created for this project.

From early stage analyses of snowtweets data, the team has found that it matches pretty well with the data from simulations. Interestingly, the more tweets they get which are in regions close by to each other, the better the data matches. So the more you tweet, the more accurate their analyses will be! You can visit their website for more details on how to measure snow accurately and the SnowTweets team. Now get out there and write some #snowtweets! Image credits: NASA, www.makingfriends.com


Arvind Sureh is a graduate student in Cell Biology and Molecular Physiology at the University of Pittsburgh. He holds a Bachelor’s degree in Biotechnology from PSG College of Technology, India. For his thesis, he has been studying the molecular mechanisms behind uterine contraction during pregnancy. He is also an information addict, gobbling up everything he can find on and off the internet. He enjoys reading, teaching, talking and writing science, and following that interest led him to SciStarter. Outside the lab and the classroom, he can be found behind the viewfinder of his camera. www.suresharvind.com