Archive for the ‘Guest post’ Category

Back To School With Citizen Science: A Conversation with Ben Graves

By September 14th, 2016 at 4:52 pm | Comment

In the next two posts, as part of our SciStarter in the Classroom collection, guest contributor Ben Graves will share his personal experiences and advice for using citizen science in the classroom. Graves is a fellow with the Knowles Science Teaching Foundation, which supports a small cohort of early-career teachers across the United States with intensive professional development. He teaches AP Environmental Science and freshman environmental science at Delta High School, a rural school in western Colorado. Before moving to Colorado, Ben was deeply involved in environmental education and citizen science initiatives with youth in the national parks, including leading volunteer trail crews across Alaska and teaching inquiry-based science workshops for students and teachers at NatureBridge, an organization that provides environmental science programming in the national parks.

I spend lot of my summer outdoors—in my garden, running and biking in the mountains, learning new approaches to teaching outdoor and experiential science. As the end of the summer nears, I think about how to get my science students outside. Science doesn’t need to be contained inside a classroom, and I have found that citizen science projects are a great way to get students outdoors and keep them engaged throughout the school year.
Read the rest of this entry »

Citizen Scientists Like You Could Change How We Handle Iraq’s Humanitarian Crisis

By June 24th, 2015 at 9:26 am | Comment

A refugee camp in the Kurdistan region of Iraq (Photo Credit: Flickr EU/ECHO/Caroline Gluck/CC BY-ND 2.0)

A refugee camp in the Kurdistan region of Iraq (Photo Credit: Flickr EU/ECHO/Caroline Gluck/CC BY-ND 2.0)

By analyzing images taken during times of humanitarian crises, citizen scientists can help refine a tool for data analysis improve relief efforts.

A guest post by Megan Passey and Jeremy Othenio. Edited by Arvind Suresh

In August 2014, following the fall of Mosul in Iraq, the UN declared the situation a level 3 crisis, the most severe type of humanitarian emergency. Iraq was already home to an estimated 1 million internally displaced persons prior to the current crisis, as well as over 200,000 refugees from Syria.

Read the rest of this entry »

Some Citizen Science Predictions [Guest Post]

By January 20th, 2015 at 9:00 am | Comment 1

Editor’s Note: This guest post by Chandra Clarke originally appeared on the author’s Citizen Science Center blog. Projects mentioned in this post including Loss of the Night, EteRNA and Sound Around You are all part of SciStarter’s ever growing project database. Find a citizen science project that tickles your fancy using the project finder!

I’ve been covering the citizen science movement for a very long time now; indeed, I’ve been writing about citizen science in one form or another since before it was really a movement.

Recently, I sat down and had a think about what I had seen in the past, as well as some of trends that I’ve been noticing. Today, I’m going to review some of those and also go out on a limb with some predictions as to where I see citizen science heading.

It’s Definitely a Thing, Now

In the last three or so years, I’ve noticed a sharp increase in the amount of mainstream interest in citizen science. Where it was once just the province of a smaller group of hardcore geeks (think: early adopters of the SETI@Home client), it now seems like everyone is talking about citizen science. Anecdotally, I’ve been interviewed by a fairly wide range of media outlets — everything from CBC Radio to Woman’s World. On the hard data side, this screen shot of the Google Trends entry on citizen science bears this out:

Source: Google Trends
Source: Google Trends


There’s More Variety Than Ever

Citizen science projects are busting out all over, so there’s now a really impressive range of both topics and types of projects. Whereas once your choice was between the Christmas Bird Count, deploying BOINC, or playing with images from Mars, now you can do everything from raising Monarch butterflies to being a paleontologist in your kitchen.

Citizen Science is Converging with Other Movements

Open source, participatory civics, activism, maker spaces, crowdfunding: citizen science is part of an even broader shift across many segments of society, and in some cases it’s increasingly hard to see where one movement begins and another ends.

For example, Pybossa is open source software that will allow you to create your own citizen science project; meanwhile the Open Space Agency is open sourcing the plans for pro-astronomy grade telescope. Projects like Skywarn or Safecast are civic applications that want you to help your fellow citizens. Extreme citizen science tries to take the concept to developing countries for an empowering approach, while the DIY and maker crowds dive into all sorts of aspects of science, including biology.

Gaming is Here to Stay

There are an increasing number of citizen science games, some with the data processing and manipulation right out front like EteRNA, and some not quite so much, like Reverse the Odds. This not to be confused with the gamification of citizen science projects: that is, the addition of game elements like leaderboards, badges, scoring, etc., to an otherwise non-game-based project. (The jury is still out as to how effective gamification is at improving user retention.)

Point and Click Projects Are Here to Stay… For a While

Zooniverse has pretty much perfected the model of citizen science projects wherein users are presented with a bit of data (most often an image) and are asked to perform a simple task (usually identify and locate a specific feature). As more and more people get interested in citizen science in general, the platform (and others like it) will likely continue to register new users faster than it ‘loses’ them. This is a good thing, because the participation dropoff curves appear to be pretty steep. Eventually, however, as more interesting ways to do citizen science continue to proliferate, and if we ever see a ‘peak citizen science’ (i.e., the most number of people likely to do citizen science are already doing it), this will no longer be the case.

On the flip side, I think that image processing technology will replace the need for human participation here sooner, rather than later, in part because mega-companies like Google and Baidu are throwing boatloads of money at the problem, and because technology improvement curves are much steeper than we realize.

But Apps are Where It’s At

The number of citizen science apps — and by this I mean the programs that run on tablets or smartphones — is going up, and that has opened up a whole new frontier in citizen science. Whereas before, most citizen science has been about data processing, apps allow for more datacollection. Apps like Sound Around You or Loss of the Night are good examples.

However, I think we’ve only just barely scratched the surface of what’s possible with current mobile technology. The average smart phone now comes with an accelerometer, a camera, a video camera, a magnetometer, an ambient light detector, GPS, and obviously, a speaker and a microphone, all as standard equipment. Considering how creative people are getting with simple GoPro cameras and their special mounts, or cameras attached to drones just for fun, there’s clearly a lot of scope for some much more interesting citizen science apps than what we’re currently doing.

That Internet of Things We Keep Hearing About

As sensors become cheaper and cheaper, and the Internet becomes even more ubiquitous, the average citizen, with or without connection to an official citizen science project, will soon be able to measure and track pretty much anything. (Seriously, check out those links to see what’s coming, especially if you’re looking for ideas.) Anyone will be able to deploy sensors, and this will in turn generate huge amounts of highly granular data. Indeed, most of us will deploy sensors, even if not entirely deliberately, because they’re going to be embedded in the products we use.

In some ways, we’re just beginning to build a massive nervous system for ourselves and our planet, and it’s going to teach us all sorts of amazing things. We don’t yet know what we don’t know.

But it’s going to be very interesting. Stay tuned.

chandra_clarke2Chandra Clarke is an award-winning business woman, prolific writer, and a passionate advocate of learning and knowledge. You can see her citizen science blog at and her personal blog at

Citizen participation in science at the Museum of Science in Boston

By December 11th, 2014 at 1:16 pm | Comment

This is a guest post from David Sittenfeld, Manager, Forums at the Museum of Science, Boston.


Rica, a Museum summer youth intern, facilitates a discussion about urban air quality issues. Photo by David Rabkin, Museum of Science.

Rica, a Museum summer youth intern, facilitates a discussion about urban air quality issues. Photo by David Rabkin, Museum of Science.

At the Museum of Science in Boston, we’ve been exploring three flavors of citizen science over the last half-decade or so. We started with fireflies and have added participatory efforts around urban environmental health assessment and participatory policy formulation.  We’re excited about the way that citizen science has transformed the landscape for science and are looking forward to what’s next! Read the rest of this entry »

The Great Indoors: Sensing Carbon Monoxide Levels and Indoor Air Quality [GUEST POST]

By May 4th, 2014 at 1:59 pm | Comment


SensorDrone tool measuring carbon monoxide in ppm (parts per million) Image credit: Kevin Webster

Per the Environmental Protection Agency, the average American spends 90% of their time indoors.

At the same time, when we think of citizen science, our mind’s eye often pictures the great outdoors: wide expanses of open space, jutting mountains, birds in trees, and frogs sitting near meandering streams. In part, that’s due to a perception that science takes place outdoors. Also, many of us want to spend more time there, so when we get excited about a project, we tend to migrate towards counting birds, or reporting when the first flowers bud and open in our back yards.

In the end, it’s important for us to understand our normal environment. That would seem to put a significant importance in understanding our indoor air quality where we live, work, and play.

In most places in America, outdoor air quality is actually very good. Certainly, in the densest of urban areas with tall buildings, lots of tunnels, and larger than normal vehicle traffic, we may see a degradation of outdoor air quality. Sometimes this is visible, and sometimes its only measurable with sensors and instruments.

Outside of those urban areas though, we tend to see very good air. It’s breathable, and primarily healthy. That’s not to say there’s nothing to be concerned about in our outdoor environments. In fact, there are a few Citizen Science projects out there already looking into outdoor air quality. Take as an example the work being done by citizen scientists with AirCasting.

What the emphasis on outdoor air quality sampling does is simply imply that most of us think about air quality in perhaps a backwards sense We should really be looking indoors for the first signs of trouble. After all, the air in our homes, offices, and factories all originates outdoors.

The systems we have for circulation, climate control, and ventilation in buildings all rely upon fresh sources of air being pulled into our spaces from outside. The processes affecting that air once it’s inside can create some of our most problematic air quality issues. These days, new sensors and instruments exist that can help us understand those processes and their effects on our health and well being.

Carbon Monoxide

Let’s look initially at carbon monoxide in particular.


Carbon monoxide molecule Image: Wikimedia

Carbon monoxide is produced by the incomplete burning of materials. It’s colorless, odorless, and it exists just about everywhere. Many states now have laws about carbon monoxide detectors, and their placement in homes, hotels, and other places of business. In part though, those regulations aren’t set up in such a way that tell the whole story of the carbon monoxide problem.

For example, a carbon monoxide detector that you would buy in a home improvement store and install in your home will alert you to a problem in one of two ways, most likely:

1.) At somewhere between 70 to 150 parts per million, the average household detector will alarm after 60 to 240 minutes of exposure.

2.) At 150 to 400 parts per million, the alarm is prescribed to alarm at 10 to 50 minutes of exposure.

For most healthy people, this is enough of an alert to prevent unconsciousness, and potentially death. That’s specifically the purpose of these alarms. To that end, they are very valuable, and prevent disastrous situations.

At the same time, many global environmental agencies would indicate that long term exposure to much, much lower levels of carbon monoxide has negative health effects. In particular, asthmatics, those with heart conditions, and potentially pregnant women shouldn’t be exposed to more than 10 parts per million for any length of time.

So standard alarms won’t help us understand those damaging situations. So here’s an opportunity for concerned Citizen Scientists to use modern sensors to have a positive impact. It’s simple and relatively affordable for anyone to purchase a sensor that will tell them exact amounts of carbon monoxide in their indoor air at all times, not simply when potentially critical amounts are present.

There are many devices on the market that display carbon monoxide levels on a digital readout, in real time. To be sure, even 10 parts per million isn’t common place, and would generally warn us that a larger problem is present. At the same time, creating a larger understanding of what carbon monoxide levels exist in certain types of places would benefit indoor air quality scientists. It would be great to see these kinds of studies being done, so we can develop a sounder policy and strategy on how it should be measured, and where.

For example:

1. Are CO levels different in certain types of businesses?
2. What are CO levels like in hotel rooms near heated indoor pools, as opposed to those without such amenities?
3. What time of year do we see the biggest spikes in indoor carbon monoxide levels?
4. In general, are standard CO alarms doing enough to maintain good indoor air quality?

Many of us have theories about all of the above, but collecting data from people on a daily basis, all over the world, from different walks of life, would go a long way towards a deeper understanding.

Indoor air quality doesn’t begin and end with carbon monoxide. While it’s a “high profile” measurement, other kinds of sensors are now readily available that measure other pollutants. More and more types of sensors are entering the marketplace each year that will assist citizen scientists and their research partners in understanding other things, such as radon, radiation, Volatile Organic Compounds and particulates, molds, and more. In the end, it will benefit everyone to spend some time understanding all kinds of air quality: indoor and out.

So what can you do? Lots of things!

First step would be to acquire a carbon monoxide detector that has a real time digital readout. (You can try out tools like SensorDrone that detect multiple variables like gas, light, humidity, etc.) You’ll want to know what carbon monoxide levels are in places you spend the most time. Then, start recording levels at different places you go. Make a journal that describes both the levels of CO in various areas, and why you think CO might be present.

Some of the places you will want to check:

Any place using a heater of some sort.
Anywhere where engines are running in enclosed spaces.
Hockey Rinks.
Hotel rooms.
Indoor swimming pools.

All of these types of places have the possibility of having higher than normal carbon monoxide concentrations.

If we find a place with abnormally high readings, such as anything over 5 PPM on a regular basis, let them know. Never assume a business understands what their day to day operations are doing to indoor air quality.

It’s one of the reasons citizen science can help with this kind of study. There is a real lack of awareness when it comes to carbon monoxide, essentially since everyone tends to feel they are safe in areas that have alarms.

By knowing more about carbon monoxide, you can help educate everyone around you. And you can help air quality scientists do real studies that promote good standards.

90% of your life is spent indoors. We need to spend more time thinking about it. With modern sensor technology, you can play a huge role in getting more people thinking about it.


Kevin Websteris an outdoors-man, writer, and marketer. He currently is the Sales and Marketing Manager at Sensorcon in Buffalo, NY. His interests are science, logic, grammar, and music. The order of those importances varies.