Archive for the ‘Guest post’ Category

Some Citizen Science Predictions [Guest Post]

By January 20th, 2015 at 9:00 am | Comment

Editor’s Note: This guest post by Chandra Clarke originally appeared on the author’s Citizen Science Center blog. Projects mentioned in this post including Loss of the Night, EteRNA and Sound Around You are all part of SciStarter’s ever growing project database. Find a citizen science project that tickles your fancy using the project finder!

I’ve been covering the citizen science movement for a very long time now; indeed, I’ve been writing about citizen science in one form or another since before it was really a movement.

Recently, I sat down and had a think about what I had seen in the past, as well as some of trends that I’ve been noticing. Today, I’m going to review some of those and also go out on a limb with some predictions as to where I see citizen science heading.

It’s Definitely a Thing, Now

In the last three or so years, I’ve noticed a sharp increase in the amount of mainstream interest in citizen science. Where it was once just the province of a smaller group of hardcore geeks (think: early adopters of the SETI@Home client), it now seems like everyone is talking about citizen science. Anecdotally, I’ve been interviewed by a fairly wide range of media outlets — everything from CBC Radio to Woman’s World. On the hard data side, this screen shot of the Google Trends entry on citizen science bears this out:

Source: Google Trends
Source: Google Trends

 

There’s More Variety Than Ever

Citizen science projects are busting out all over, so there’s now a really impressive range of both topics and types of projects. Whereas once your choice was between the Christmas Bird Count, deploying BOINC, or playing with images from Mars, now you can do everything from raising Monarch butterflies to being a paleontologist in your kitchen.

Citizen Science is Converging with Other Movements

Open source, participatory civics, activism, maker spaces, crowdfunding: citizen science is part of an even broader shift across many segments of society, and in some cases it’s increasingly hard to see where one movement begins and another ends.

For example, Pybossa is open source software that will allow you to create your own citizen science project; meanwhile the Open Space Agency is open sourcing the plans for pro-astronomy grade telescope. Projects like Skywarn or Safecast are civic applications that want you to help your fellow citizens. Extreme citizen science tries to take the concept to developing countries for an empowering approach, while the DIY and maker crowds dive into all sorts of aspects of science, including biology.

Gaming is Here to Stay

There are an increasing number of citizen science games, some with the data processing and manipulation right out front like EteRNA, and some not quite so much, like Reverse the Odds. This not to be confused with the gamification of citizen science projects: that is, the addition of game elements like leaderboards, badges, scoring, etc., to an otherwise non-game-based project. (The jury is still out as to how effective gamification is at improving user retention.)

Point and Click Projects Are Here to Stay… For a While

Zooniverse has pretty much perfected the model of citizen science projects wherein users are presented with a bit of data (most often an image) and are asked to perform a simple task (usually identify and locate a specific feature). As more and more people get interested in citizen science in general, the platform (and others like it) will likely continue to register new users faster than it ‘loses’ them. This is a good thing, because the participation dropoff curves appear to be pretty steep. Eventually, however, as more interesting ways to do citizen science continue to proliferate, and if we ever see a ‘peak citizen science’ (i.e., the most number of people likely to do citizen science are already doing it), this will no longer be the case.

On the flip side, I think that image processing technology will replace the need for human participation here sooner, rather than later, in part because mega-companies like Google and Baidu are throwing boatloads of money at the problem, and because technology improvement curves are much steeper than we realize.

But Apps are Where It’s At

The number of citizen science apps — and by this I mean the programs that run on tablets or smartphones — is going up, and that has opened up a whole new frontier in citizen science. Whereas before, most citizen science has been about data processing, apps allow for more datacollection. Apps like Sound Around You or Loss of the Night are good examples.

However, I think we’ve only just barely scratched the surface of what’s possible with current mobile technology. The average smart phone now comes with an accelerometer, a camera, a video camera, a magnetometer, an ambient light detector, GPS, and obviously, a speaker and a microphone, all as standard equipment. Considering how creative people are getting with simple GoPro cameras and their special mounts, or cameras attached to drones just for fun, there’s clearly a lot of scope for some much more interesting citizen science apps than what we’re currently doing.

That Internet of Things We Keep Hearing About

As sensors become cheaper and cheaper, and the Internet becomes even more ubiquitous, the average citizen, with or without connection to an official citizen science project, will soon be able to measure and track pretty much anything. (Seriously, check out those links to see what’s coming, especially if you’re looking for ideas.) Anyone will be able to deploy sensors, and this will in turn generate huge amounts of highly granular data. Indeed, most of us will deploy sensors, even if not entirely deliberately, because they’re going to be embedded in the products we use.

In some ways, we’re just beginning to build a massive nervous system for ourselves and our planet, and it’s going to teach us all sorts of amazing things. We don’t yet know what we don’t know.

But it’s going to be very interesting. Stay tuned.


chandra_clarke2Chandra Clarke is an award-winning business woman, prolific writer, and a passionate advocate of learning and knowledge. You can see her citizen science blog at CitizenScienceCenter.com and her personal blog at ChandraKClarke.com.

Citizen participation in science at the Museum of Science in Boston

By December 11th, 2014 at 1:16 pm | Comment

This is a guest post from David Sittenfeld, Manager, Forums at the Museum of Science, Boston.

FIREFLIES, HEALTHIER CITIES, AND POLICY INPUT: CITIZEN PARTICIPATION IN SCIENCE AT THE MUSEUM OF SCIENCE IN BOSTON

Rica, a Museum summer youth intern, facilitates a discussion about urban air quality issues. Photo by David Rabkin, Museum of Science.

Rica, a Museum summer youth intern, facilitates a discussion about urban air quality issues. Photo by David Rabkin, Museum of Science.

At the Museum of Science in Boston, we’ve been exploring three flavors of citizen science over the last half-decade or so. We started with fireflies and have added participatory efforts around urban environmental health assessment and participatory policy formulation.  We’re excited about the way that citizen science has transformed the landscape for science and are looking forward to what’s next! Read the rest of this entry »

The Great Indoors: Sensing Carbon Monoxide Levels and Indoor Air Quality [GUEST POST]

By May 4th, 2014 at 1:59 pm | Comment

carbon-monoxide

SensorDrone tool measuring carbon monoxide in ppm (parts per million) Image credit: Kevin Webster

Per the Environmental Protection Agency, the average American spends 90% of their time indoors.

At the same time, when we think of citizen science, our mind’s eye often pictures the great outdoors: wide expanses of open space, jutting mountains, birds in trees, and frogs sitting near meandering streams. In part, that’s due to a perception that science takes place outdoors. Also, many of us want to spend more time there, so when we get excited about a project, we tend to migrate towards counting birds, or reporting when the first flowers bud and open in our back yards.

In the end, it’s important for us to understand our normal environment. That would seem to put a significant importance in understanding our indoor air quality where we live, work, and play.

In most places in America, outdoor air quality is actually very good. Certainly, in the densest of urban areas with tall buildings, lots of tunnels, and larger than normal vehicle traffic, we may see a degradation of outdoor air quality. Sometimes this is visible, and sometimes its only measurable with sensors and instruments.

Outside of those urban areas though, we tend to see very good air. It’s breathable, and primarily healthy. That’s not to say there’s nothing to be concerned about in our outdoor environments. In fact, there are a few Citizen Science projects out there already looking into outdoor air quality. Take as an example the work being done by citizen scientists with AirCasting.

What the emphasis on outdoor air quality sampling does is simply imply that most of us think about air quality in perhaps a backwards sense We should really be looking indoors for the first signs of trouble. After all, the air in our homes, offices, and factories all originates outdoors.

The systems we have for circulation, climate control, and ventilation in buildings all rely upon fresh sources of air being pulled into our spaces from outside. The processes affecting that air once it’s inside can create some of our most problematic air quality issues. These days, new sensors and instruments exist that can help us understand those processes and their effects on our health and well being.

Carbon Monoxide

Let’s look initially at carbon monoxide in particular.

303px-Carbon-monoxide-3D-vdW

Carbon monoxide molecule Image: Wikimedia

Carbon monoxide is produced by the incomplete burning of materials. It’s colorless, odorless, and it exists just about everywhere. Many states now have laws about carbon monoxide detectors, and their placement in homes, hotels, and other places of business. In part though, those regulations aren’t set up in such a way that tell the whole story of the carbon monoxide problem.

For example, a carbon monoxide detector that you would buy in a home improvement store and install in your home will alert you to a problem in one of two ways, most likely:

1.) At somewhere between 70 to 150 parts per million, the average household detector will alarm after 60 to 240 minutes of exposure.

2.) At 150 to 400 parts per million, the alarm is prescribed to alarm at 10 to 50 minutes of exposure.

For most healthy people, this is enough of an alert to prevent unconsciousness, and potentially death. That’s specifically the purpose of these alarms. To that end, they are very valuable, and prevent disastrous situations.

At the same time, many global environmental agencies would indicate that long term exposure to much, much lower levels of carbon monoxide has negative health effects. In particular, asthmatics, those with heart conditions, and potentially pregnant women shouldn’t be exposed to more than 10 parts per million for any length of time.

So standard alarms won’t help us understand those damaging situations. So here’s an opportunity for concerned Citizen Scientists to use modern sensors to have a positive impact. It’s simple and relatively affordable for anyone to purchase a sensor that will tell them exact amounts of carbon monoxide in their indoor air at all times, not simply when potentially critical amounts are present.

There are many devices on the market that display carbon monoxide levels on a digital readout, in real time. To be sure, even 10 parts per million isn’t common place, and would generally warn us that a larger problem is present. At the same time, creating a larger understanding of what carbon monoxide levels exist in certain types of places would benefit indoor air quality scientists. It would be great to see these kinds of studies being done, so we can develop a sounder policy and strategy on how it should be measured, and where.

For example:

1. Are CO levels different in certain types of businesses?
2. What are CO levels like in hotel rooms near heated indoor pools, as opposed to those without such amenities?
3. What time of year do we see the biggest spikes in indoor carbon monoxide levels?
4. In general, are standard CO alarms doing enough to maintain good indoor air quality?

Many of us have theories about all of the above, but collecting data from people on a daily basis, all over the world, from different walks of life, would go a long way towards a deeper understanding.

Indoor air quality doesn’t begin and end with carbon monoxide. While it’s a “high profile” measurement, other kinds of sensors are now readily available that measure other pollutants. More and more types of sensors are entering the marketplace each year that will assist citizen scientists and their research partners in understanding other things, such as radon, radiation, Volatile Organic Compounds and particulates, molds, and more. In the end, it will benefit everyone to spend some time understanding all kinds of air quality: indoor and out.

So what can you do? Lots of things!

First step would be to acquire a carbon monoxide detector that has a real time digital readout. (You can try out tools like SensorDrone that detect multiple variables like gas, light, humidity, etc.) You’ll want to know what carbon monoxide levels are in places you spend the most time. Then, start recording levels at different places you go. Make a journal that describes both the levels of CO in various areas, and why you think CO might be present.

Some of the places you will want to check:

Any place using a heater of some sort.
Anywhere where engines are running in enclosed spaces.
Greenhouses.
Hockey Rinks.
Hotel rooms.
Restaurants.
Indoor swimming pools.

All of these types of places have the possibility of having higher than normal carbon monoxide concentrations.

If we find a place with abnormally high readings, such as anything over 5 PPM on a regular basis, let them know. Never assume a business understands what their day to day operations are doing to indoor air quality.

It’s one of the reasons citizen science can help with this kind of study. There is a real lack of awareness when it comes to carbon monoxide, essentially since everyone tends to feel they are safe in areas that have alarms.

By knowing more about carbon monoxide, you can help educate everyone around you. And you can help air quality scientists do real studies that promote good standards.

90% of your life is spent indoors. We need to spend more time thinking about it. With modern sensor technology, you can play a huge role in getting more people thinking about it.

 


Kevin Websteris an outdoors-man, writer, and marketer. He currently is the Sales and Marketing Manager at Sensorcon in Buffalo, NY. His interests are science, logic, grammar, and music. The order of those importances varies.

UK Flooding – And What You Can Do About It [GUEST POST]

By April 8th, 2014 at 4:13 pm | Comment

Thames_flood_level_markers_at_Trinity_Hospital_Greenwich

Thames Valley Sewer System overwhelmed and instrumentation destroyed, how you can contribute to water monitoring with citizen science.

Flooding is not just a problem for residents and local businesses; it is also a major issue for the UK’s water companies. Throughout the closing months of 2013 and the start of the current year, England was hit with torrential rain and areas of serious flooding; especially in the southern regions. The amount of flood water entering the sewage pipe network caused companies like Thames Water to lose all of their instrumentation and monitoring equipment. Floodwater effectively drowned the devices put in place by the company, meaning they had to replace them all.

This procedure involved turning water supplies off as engineers installed new monitoring equipment, costing millions of pounds to implement. The exact amount of money this cost Thames Water is uncertain and is hard to specify; it all very much depends on the type of monitoring equipment and the scale of repair. Whatever the cost, it is an expense Thames Water could have done without! So why didn’t the instrumentation in place warn Thames Water of the flood risk before it actually happened? What can the company do to avoid this problem in the future? This article aims to answer these questions.

Flood Management – Who is Responsible?

Nationally, the Department for Environment, Food and Rural Affairs (Defra) is responsible for flood policies and coastal erosion risk management. This organisation also provides funding for flood risk management authorities via grants from the Environmental Agency and other local authorities. There are other societies and authorities that share responsibility of flood management including:

  • The Environment Agency – Operational responsibility for overseeing the risk of flooding from main reservoirs, rivers, estuaries and the sea. This association is also a coastal erosion rick management authority.
  • Lead Local Flood Authorities – Responsible for creating, maintaining and applying strategies for local flood risk management and also keeping a register of flood risk assets. These authorities analyse the risk of flooding from surface water and groundwater.
  • District Councils – Working alongside Lead Local Flood Authorities and other organisations, these are important partners in planning local flood risk management schemes and carrying out operations on minor watercourses.
  • Highway Authorities – Responsible for supplying and maintaining highway drainage and roadside ditches. These must ensure road projects to not interfere with or increase the risk of flooding.
  • Water and Sewerage Companies – These companies are also responsible for managing flood risks, from both water and foul or combined sewer systems.

All of these mentioned authorities have a duty to co-operate with each other and to share information, under the Flood and Water Management Act 2010. This act ensures all flood risk management authorities work together to provide the best possible flood risk management for the benefit of the relevant communities.

What Causes Flooding?

Aside from the obvious, there are quite a few possible causes of flooding. Terrible weather with relentless rainfall is of course the main cause of most floods, but there are other contributory factors too.  Climate change, deforestation, population growth and paving over natural drainage areas are all putting increasing pressure on the UK’s sewerage network. This can be made even worse by individuals putting inappropriate substances and products into the drains, such as wet-wipes and food products.

But what caused such major flooding in the Thames Valley area? How did the company lose all of its instrumentation and why was this area affected so badly by the weather? Well, the majority of areas within England have divided sewers to take rainwater and foul waste separately; but in many areas of London the sewer system is combined. This means foul waste and rainwater is combined in one sewer system. During a heavy storm this can cause the sewer flow to be much greater than usual and can often reach maximum capacity; causing the system to overflow and destroy the monitoring equipment installed.

Citizen Science – Weather@home 2014

As UK water companies identify and implement a definitive sustainable solution to flooding, what can normal citizens do to help in the meantime? Well first and foremost, information on recent flooding events in your area will help experts further understand the processes and how best to avoid the risk. So photographs, measurements and any other kind of recorded information you can obtain will help towards this.

The University of Oxford currently have a team of scientists who are working on a new citizen science project, Weather@home 2014, designed to help better understand the 2013-14 floods within the UK. There are many arguments as to what causes flooding; including inundated drainage systems, inadequate flood defences and increased urbanisation of land. But perhaps the most consistent debate lies with the connection between climate change and extreme weather changes. Weather@home 2014 investigates how much effect climate change had on the UK winter storms and aims to answer this question via the use of climate models.

Running climate models can be extremely time-consuming, but more runs mean more comparisons and ultimately stronger trends.  With this in mind, scientists are asking anybody who is interested in helping out to sign up and help complete up to 30,000 climate model reruns of winter 2013-14. Each rerun will have different assumptions about the influences of climate change on weather patterns. This is an innovative approach as it uses citizens as contributors to scientific analysis, rather than simple data collectors. Results are still pouring in and live outcomes are being posted on the project website almost every single day.

Citizen Science – Doing Flood Risk Science Differently

Flood scientist Stuart Lane and a group of researchers have been participating in another citizen science project; taking a completely different approach. The published paper, Doing flood risk science differently: an experiment in radical scientific method, details the work of an interdisciplinary team of natural and social scientists attempting an experiment in flood management within the Pickering area. The project involves scientific experts and citizens with experience in flooding, without providing them with pre-defined roles.

Each group worked in unison to generate new knowledge about a particular flooding event and to negotiate the different assumptions and commitments of each group. Participants in each group were seen to have relevant knowledge and understandings and efforts were made to expand collective perceptions, which were not set apart between academics and non-academics.

This particular project supported scientific understandings of flood hydrology via the creation of fresh models and the compilation of qualitative insights and experiences of flooding. In addition to this, the project also helped to overcome an impasse in the management of floods in Pickering by reconfiguring the relationship between scientific experts and local residents. Previously, no decision had been made to combat the appropriate use of resources for flood risk management. Both of these opposing citizen science projects help to showcase the wide variety of methods in which non-scientists can involve themselves in important research projects.

[Find more weather-related citizen science projects using SciStarter’s Project Finder.]

Thames Water Solution

In order to reduce the risk of sewer flooding in the future, water companies need to reduce the amount of rainwater entering the sewer network. Additional capacity and some new sewer systems would also largely help the situation too. Thames Water has already put some processes in place in many areas, such as installing new sensing devices to record water flow. This equipment has already proved helpful and allows the company to respond quickly to changes in weather and ground conditions. Thames Water also aims to spend up to £350million on a major programme of improvements before the year 2015, which includes:

  • A new storm relief sewer to be installed across the catchment area;
  • Enhancements to be made to the existing network;
  • A sustainable drainage system (SuDS) scheme;
  • Targeted installation of more anti-flood (FLIP) devices.

These plans were submitted to their regulator, Ofwat, with the aim of enhancing the sewerage network in the Royal Borough of Kensington & Chelsea and the London Borough of Hammersmith & Fulham. All decisions and improvements made must be based on accurate data and balanced against the need for new investment, careful management and community education. Accurate instrumentation and monitoring can help to achieve this data; so I suppose the saying should go: if you look after your monitors, they will look after you!

Image: Wikimedia (Thames flood level markers at Trinity Hospital, Greenwich. The marker on the right is for 1928)


Hayden Hill is an environmental expert and an editorial coordinator for ATi-UK. He believes that before the torrential flooding in 2012, monitoring devices were not being instrumented or managed properly. With the introduction of newer, more efficient systems, Ian believes that UK water companies will have a clearer indication of potential flood risks before they actually materialise. 

Citizen Science, Mobile Technology, and the Next Generation Science Standards [GUEST POST]

By March 20th, 2014 at 12:15 pm | Comment 1

How one science educator used SciStarter to inform pre-service teachers how to use citizen science in the classroom and in curricula.

See the Citizen Science App Matrix, which aligns citizen science projects found on SciStarter to teaching standards!

This is my first attempt to enter the blogosphere, so please bear with me. As part of my duties of assistant professor at the University of Oklahoma, I teach science education methods to elementary education majors (preservice teachers) in the Jeannine Rainbolt College of Education. Beginning in 2012, my college launched an iPad initiative where every undergraduate education major would receive their very own iPad for use in their university and field experience classrooms.

Upon receiving my own iPad, I immediately began searching the internet for viable iPad applications (apps) that were specific to science education. It was through this searching that I came across the concept of “Citizen Science” and the SciStarter website. Citizen Science, as a formal concept, has been prevalent in our society for more than 30 years. As the internet and subsequent technologies continue to develop over this period, so do the opportunities for amateur “scientists” to get involved in these types of research-based projects. These mobile smart technologies allow teachers and their students to collect and analyze data, as well as to contribute these data for the dissemination of the findings related to these projects.

Seeing the vast potential of the citizen science projects listed in the SciStarter database for my elementary school science methods course, I utilized the SciStarter Project Finder’s “Advanced Search” option to identify those citizen science projects that specifically require an iPad. After reading each summary posted on SciStarter, I then visited each project’s website to examine thoroughly the project task. To justify using these projects in the elementary school classroom and for my own edification, I aligned each citizen science project with the scientific practices, disciplinary core ideas, and related performance expectations in the Next Generation Science Standards.

Once I gained proficiency in this task, I assigned the citizen science project to my preservice teachers. My students were responsible for visiting SciStarter and selecting one citizen science project that required the use of an iPad. They were then instructed to determine the research question that guided their particular project and to prepare instructions for data collection and an appropriate data organizer. Students were expected to collect and submit data pertinent to the project and analyze the current and existing data by generating or reproducing graphs that best represented these data. After experiencing these projects, students then aligned the scientific practices that best aligned with the project and determined the disciplinary core idea(s) and performance expectations inherent in the project.

Most of my students thoroughly enjoyed this assignment and related experiences. Many of these students incorporated their chosen project in their field experience placement during the semester. Through this assignment, I have observed the value of citizen science apps and their relevance to elementary education majors and their field experience students. Thank you, SciStarter, for providing this database for my students and me.

Image: Wikimedia


Timothy A. Laubach is an assistant professor in science education at the University of Oklahoma. He holds a BS in earth science education and a MEd and PhD in science education. Tim has 20 years of combined teaching experience at the elementary, secondary, undergraduate, and graduate levels. He has published 12 peer-reviewed journal articles and one book chapter and presented 40 papers at national/international to state-level science education conferences. Tim has also lead extensive professional development for science and mathematics teachers across the state of Oklahoma. He will occasionally be advising SciStarter on aligning citizen science projects to Common Core, Next Generation Science Standards, and the basic scientific practices.