Archive for the ‘monitoring’ tag

Recording The Noise Scape of Your Life with NoiseTube

By February 19th, 2014 at 6:17 pm | Comment

NoiseTube allows citizen scientists to monitor noise pollution with a mobile app.

Come to your senses! SciStarter has curated a list of projects for all 5 senses.

Pristine view or noise pollution?

Pristine view or noise pollution?

I was overjoyed the first time I heard the peaceful fountain, twittering bird song, and gentle rustle of wind through the trees oustide my office window. Then, one morning in early January, I opened the windows to a cacophony of new, and unwelcomed, sounds – cars on the freeway, backhoes and bulldozers beeping, chainsaws buzzing. The developers had arrived with their manmade noise pollution and associated health risks. But how loud is this new racket wafting in on the breeze?

NoiseTube was developed by the Sony Computer Science Laboratory in Paris and the BrusSense Team at the Vrije Universiteit Brussel to empower citizen scientists to measure and record their daily exposure to noise. According to Dr. Ellie D’Hondt, a scientist with BrusSense, “The volunteers helping out in these campaigns are essential… we are showing that participatory maps are just as useful as the ones made by official approaches.”

Once the free mobile app (available for iOS, Android, and Java ME-based smartphones) is downloaded, your mobile phone is transformed into a noise-sensing machine. Curious how noisy the school run is? Is the ‘sound of silence’ really deafening? Are theme parks louder than crashing waves? Simply launch the app and record your noise exposure on-the-go to find out. Once your tracks are uploaded, you can compare your experiences with others around the globe.

Since its launch in 2008, over 2250 citizen scientists representing more than 652 cities in 75 countries have contributed sound tracks to the project. The top seven cities – Paris, Brussels, Zagreb, Hoeilaart, Aachen, Brooklyn, and Braunschweig; account for over 1000 minutes, or 16.67 hours, of recordings.

WommelgemMap

Citizen scientists identify traffic noise in Wommelgem, Belgium.

After analyzing data from just one city, Wommelgem, Belgium, Dr. D’Hondt explains, “I learned interesting things – where red lights were, where there were traffic slowers, and how locals would related these to colours on the noise map.” But how can a noise map show where red lights are? Through collaboration and feedback from local citizen scientists, Dr. D’Hondt discovered that a red light was located on the high dB(A) side of a roundabout (pictured). Eventually, Dr. D’Hondt would like to understand how loudness correlates positively and/or negatively with fun experiences.

While helping scientists understand how people perceive their daily soundscape, researchers hope to engage city planners by providing them with evidence to improve zoning and building regulations. “Getting the techniques to be accepted by authorities is still difficult at times.” Dr. D’Hondt observes. “Cities struggle with these norms [noise assessment guidelines] and often don’t have the means to include more modern techniques [such as participatory sensing].” The BrusSense lab has shown that citizen scientists contribute high quality data and that “Particpatory Noise Mapping Works!” – supporting the continued acceptance and democratisation of grassroots citizen scientist projects to explore the world around us.

Armed with my NoiseTube, I’m dying to know how the backhoes and bulldozers compare to rustling leaves or the cheering crowds at this weekend’s race. How might your experiences with fresh crunching snow compare to those of crashing waves? Why not grab your mobile phone and record the soundscape of our modern lives?

Photos: Melinda T. Hough and NoiseTube


Dr Melinda T. Hough is a freelance science advocate and communicator dedicated to sharing the inspiring stories of life science and helping the general public explore their world. She holds a PhD from the University of Edinburgh for research into how antibiotics kill bacteria, was a policy fellow at the National Academy of Sciences, and is a published photographer. Naturally curious, it is hard to tear Melinda away from science.  Not content to stay stateside, she might be found exploring, often behind the lens of her Nikon D80 or plotting her next epic adventure.

Just Add Water: Why Water Monitoring is Important

By September 18th, 2013 at 12:56 pm | Comment

Today is World Water Monitoring Day! Participate by ordering a test kit and submitting sample data through December of this year. Also, check out the ocean of other water citizen science projects on SciStarter.

IMG-20130918-WA0001_1

Here at SciStarter, we spend a lot of time supporting citizen science, but we also happen to be citizen scientists ourselves. In the spirit of World Water Monitoring Day, I trekked to the Charles River in Boston to grab a water sample. Barring all potential parking and trespassing violations, it was a success! Still, you might wonder, why does this sample matter? Why care about water?

I’m glad you asked. But before I dive deeper (pun intended), here are some facts to consider. An adult human is made of ~60% water. About 70% of Earth is covered by water. We need water for our metabolic processes internally and for our day-to-day tasks externally. Water is there when you shower, brush your teeth, or guzzle down a drink after a run. Water is also essential for the productivity of farms, which, in turn, provide us food. You get the picture: we need water. Likewise, so do other animals and plants, especially those that live in or near aquatic environments.

Consequently, the sample data collected and submitted by millions of people on World Water Monitoring Day not only benefit us human beings. It also helps scientists better understand a multitude of aquatic environments around the globe.

Participating couldn’t be easier. World Water Monitoring Challenge, an education and outreach program, provides kits that you can purchase and use to sample the water in your area. Here are the main concepts behind what you can test and why it’s important to do so.

Turbidity, the measure of relative water clarity. This is important when producing drinking water for human consumption and for many manufacturing uses. Turbid water may be the result of soil erosion, urban runoff, algal blooms, and bottom sediment disturbances caused by boat traffic and bottom-feeding fish. (You can even make your own secchi disk to measure turbidity.)

pHa measurement of the acidic or basic quality of water. Most aquatic animals are adapted to a specific range of pH level and could die, stop reproducing, or move away if the pH of the water varies beyond their range. Low pH levels can also allow toxic compounds to be exposed to aquatic plants and animals. pH can be affected by atmospheric deposition (acid rain), wastewater discharge, drainage from mines, or the type of rock in the surrounding area.

20130918_105910_1

World Water Monitoring Challenge test kit

Dissolved oxygen levels. Natural water with consistently high dissolved oxygen levels is most likely to sustain stable and healthy environments. Changes to aquatic environments can affect the availability of oxygen in the water. High levels of bacteria or large amounts of rotting plants can cause the oxygen saturation to decrease, which affects the ability of plants and animals to survive in and around it.

Water temperatureIf temperatures are outside an organism’s normal range, the organism could become stressed or potentially die. Temperature also affects the rate of photosynthesis in aquatic plants as well as their sensitivity to toxic wastes, parasites, and disease. Furthermore, water temperature can affect the amount of oxygen water can hold (cold water holds more oxygen than warm water).

This project is ideal for anyone who lives near a water source, educators who want ideas to teach students about water chemistry, or citizen scientists hoping to contribute to an increasingly important field of research.

It’s the perfect project to illustrate that when it comes to citizen science, you can dive right in.

References:

How Much Water is There On, In, and Above Earth?” USGS. Web. 9/18/13

Importance of Turbidity.” Environmental Protection Agency. 9/18/13

The Water in You.” USGS. Web. 9/18/13

World Water Monitoring Challenge booklet

World Water Monitoring Day.” Wikipedia. Wikimedia Foundation, Inc. Web. 9/18/13

Images: Lily Bui


Lily Bui is the executive editor of SciStarter. She holds dual degrees in International Studies and Spanish from the University of California Irvine. She has worked on Capitol Hill in Washington, D.C.; served in AmeriCorps in Montgomery County, Maryland; worked for a New York Times bestselling ghostwriter; and performed across the U.S. as a touring musician. She currently works in public media at WGBH-TV and the Public Radio Exchange (PRX) in Boston, MA. In her spare time, she thinks of cheesy science puns. Follow @dangerbui.

Monitoring Water Quality

By September 5th, 2013 at 12:09 am | Comment

This post is part of this week’s  featured projects about water quality monitoring. Take a look!

Clean water. We all need it. It is necessary for human health, food security, economic growth, and preservation of natural habitats. Sadly, human activity often threatens water quality. Tracking water quality is a crucial step is maintaining safe water. It is also a huge effort.

Across the nation, individuals volunteer their time to monitor the waters in their local streams, bays and waterways. Monitoring activities include testing water chemistry, species surveys, physical assessments of watershed characteristics and surrounding habits, among others. The data collected enable researchers, policymakers, watershed organizations and local citizens to understand how our activities affect water quality, an important step learning how to protect these valuable resources.

With so many individual groups, understanding and implementing training and testing is a challenge. Recognizing this, the Extension Volunteer Monitoring Network was established. By increasing support and communication between groups, the hope is to build a cohesive “best practices” handbook for current and future groups. The network has made a significant push to help groups to get started, and to build the capacity of existing groups. Already, their website is rich with resources on training guides, equipment suggestions, to validation studies which individual groups can use to grow and develop their efforts.

Most recently, the project launched a completely updated online directory of volunteer water monitoring programs in the United States. Their directory map provides links to over 400 programs which represent 1800 different water monitoring initiatives. All programs listed were contacted to ensure they were still active and previously unlisted programs were added as well. The website also has a list of the monitoring programs.

Here at SciStarter, we have a number of water-related programs that are certainly worth checking out. Here is a small sample:

Creek Freaks – Participants gather information on stream health, posting the information on an interactive map.

Great Lakes Environmental Monitoring – Help monitor water quality around the Great Lakes.

Wading for Water Sticks – Volunteers study water sticks insects and their water environments.

Marine Debris Tracker – A mobile app that tracks debris along your local coastline or waterway.

SeaNet – Volunteers measure the effects of offshore developments on seabirds

Secchi Dip-In – Annually in July, participants are asked to take a transparency measurement in a local waterway. (Deadline for this year was July 21.)

To browse over 600 active citizen science projects, visit SciStarter’s project finder.


Carolyn Graybeal holds a PhD in neuroscience from Brown University. She is a former National Academies of Science Christine Mirzayan Science & Technology Policy Fellow during which time she worked with the Marian Koshland Science Museum. In addition the intricacies of the human brain, she is interested in the influence of education and mass media in society’s understanding of science.

Photo: www.dec.ny.gov

The Secchi Dip-In

By July 20th, 2013 at 11:57 am | Comment

Water Testing http://toxics.usgs.gov/photo_gallery/aml_page3.html

Calling all water monitoring groups! It is time for the annual Secchi Dip-In. From now until July 22, volunteer and professional water monitoring groups are being asked to take transparency measurements in a local body of water.

Secchi DiskA secchi disk is a common tool for measuring water turbidity, or water cloudiness. Turbidity is caused by small particles suspended in the water and is a reflection of water quality. To take turbidity measurements, on a calm and bright day the user lowers the disk into the water until the disk is no longer visible. The depth of the disk is used to calculate turbidity. Land erosion from construction or mining, pollution run-off or increases in algae all lead to higher turbidity.

Started in 1994 at Kent State University, Ohio, the Dip-In always takes place during the first few weeks of July. Participants only have to take one transparency per body of water with their secchi disk. The project helpfully provides links for purchasing disks if you do not already have one.

While project organizers prefer that measurements are taken during the “official” dip-in period, participants are welcome to add data from anytime of the year as well as past years. Currently over 2,000 water bodies are being tracked, most of which are in North America. The data are accessible to anybody interested.

In addition to transparency measurements, participants are asked to give their general impressions of the water quality as well as the area’s general aesthetics and recreational properties. These qualitative data help project researchers ascertain the potential sources affecting water quality.

To learning more or to participate, visit  Secchi Dip-In.

—–

Find other environmental projects (and over 600+ other citizen science projects) using our Project Finder.

Photo: USGS.gov

Dr. Carolyn Graybeal earned her PhD in neuroscience from Brown University in partnership with the National Institutes of Health. After graduating, she became a Christian Mirzayan Science & Technology Policy Fellow with the National Academies of Science where she had the opportunity to immerse herself in the policy side of science. In addition the human brain, she is interested in the influence of education and mass media in society’s understanding of science. Originally from California, she is learning to identify the four seasons of the East Coast and is getting pretty good at it.

Help keep the crawdads from taking over!

By June 20th, 2011 at 1:43 pm | Comment

Help scientists deter invasive crayfish species. Photo: Craywatch.org

Help scientists deter invasive crayfish species. Photo: Craywatch.org

Some of you may have fond memories of summers spent kneeling by nearby streams, peering intently for crayfish to play with (or cook up for dinner!). These tiny, lobster-like creatures are a staple of freshwater ecosystems, southern menus, and even neuroscience classes. (No kidding — I learned about action potentials from a wonderful college professor who studies crayfish!)

Not all crayfish are alike — some native species of crawdad are being outcompeted by invasive, non-native species. Indeed, nearly half of the North American crayfish varieties are considered to be threatened.

To combat the non-native invasion, Craywatch.org is enlisting citizen scientists to monitor the spread of invasive crayfish in North America. To participate, all you need is a smartphone with a camera and a GPS tag! Find a crayfish, snap a couple of close-ups, and upload to the group’s Flickr account. Presto — you’re a citizen scientist!

Dr. Zen Faulkes, a professor of biology at The University of Texas-Pan American, recently started this project after reading a study about the positive impact of citizen scientists on bee monitoring.

Read the rest of this entry »