Archive for the ‘water’ tag

Just Add Water: Why Water Monitoring is Important

By September 18th, 2013 at 12:56 pm | Comment

Today is World Water Monitoring Day! Participate by ordering a test kit and submitting sample data through December of this year. Also, check out the ocean of other water citizen science projects on SciStarter.

IMG-20130918-WA0001_1

Here at SciStarter, we spend a lot of time supporting citizen science, but we also happen to be citizen scientists ourselves. In the spirit of World Water Monitoring Day, I trekked to the Charles River in Boston to grab a water sample. Barring all potential parking and trespassing violations, it was a success! Still, you might wonder, why does this sample matter? Why care about water?

I’m glad you asked. But before I dive deeper (pun intended), here are some facts to consider. An adult human is made of ~60% water. About 70% of Earth is covered by water. We need water for our metabolic processes internally and for our day-to-day tasks externally. Water is there when you shower, brush your teeth, or guzzle down a drink after a run. Water is also essential for the productivity of farms, which, in turn, provide us food. You get the picture: we need water. Likewise, so do other animals and plants, especially those that live in or near aquatic environments.

Consequently, the sample data collected and submitted by millions of people on World Water Monitoring Day not only benefit us human beings. It also helps scientists better understand a multitude of aquatic environments around the globe.

Participating couldn’t be easier. World Water Monitoring Challenge, an education and outreach program, provides kits that you can purchase and use to sample the water in your area. Here are the main concepts behind what you can test and why it’s important to do so.

Turbidity, the measure of relative water clarity. This is important when producing drinking water for human consumption and for many manufacturing uses. Turbid water may be the result of soil erosion, urban runoff, algal blooms, and bottom sediment disturbances caused by boat traffic and bottom-feeding fish. (You can even make your own secchi disk to measure turbidity.)

pHa measurement of the acidic or basic quality of water. Most aquatic animals are adapted to a specific range of pH level and could die, stop reproducing, or move away if the pH of the water varies beyond their range. Low pH levels can also allow toxic compounds to be exposed to aquatic plants and animals. pH can be affected by atmospheric deposition (acid rain), wastewater discharge, drainage from mines, or the type of rock in the surrounding area.

20130918_105910_1

World Water Monitoring Challenge test kit

Dissolved oxygen levels. Natural water with consistently high dissolved oxygen levels is most likely to sustain stable and healthy environments. Changes to aquatic environments can affect the availability of oxygen in the water. High levels of bacteria or large amounts of rotting plants can cause the oxygen saturation to decrease, which affects the ability of plants and animals to survive in and around it.

Water temperatureIf temperatures are outside an organism’s normal range, the organism could become stressed or potentially die. Temperature also affects the rate of photosynthesis in aquatic plants as well as their sensitivity to toxic wastes, parasites, and disease. Furthermore, water temperature can affect the amount of oxygen water can hold (cold water holds more oxygen than warm water).

This project is ideal for anyone who lives near a water source, educators who want ideas to teach students about water chemistry, or citizen scientists hoping to contribute to an increasingly important field of research.

It’s the perfect project to illustrate that when it comes to citizen science, you can dive right in.

References:

How Much Water is There On, In, and Above Earth?” USGS. Web. 9/18/13

Importance of Turbidity.” Environmental Protection Agency. 9/18/13

The Water in You.” USGS. Web. 9/18/13

World Water Monitoring Challenge booklet

World Water Monitoring Day.” Wikipedia. Wikimedia Foundation, Inc. Web. 9/18/13

Images: Lily Bui


Lily Bui is the executive editor of SciStarter. She holds dual degrees in International Studies and Spanish from the University of California Irvine. She has worked on Capitol Hill in Washington, D.C.; served in AmeriCorps in Montgomery County, Maryland; worked for a New York Times bestselling ghostwriter; and performed across the U.S. as a touring musician. She currently works in public media at WGBH-TV and the Public Radio Exchange (PRX) in Boston, MA. In her spare time, she thinks of cheesy science puns. Follow @dangerbui.

A Picture Saves 1,000 Streams – Water Quality Monitoring on Your Smartphone

By September 9th, 2013 at 10:36 am | Comment 1

This post is part of this week’s featured projects about water quality monitoring. Take a look!

Creek Watch iphone appDespite over 70% of the Earth’s surface being covered in water, one in nine people do not have access to an improved water source.(1) Contaminated water kills more people than all wars, crimes and terrorism combined yet more people have a mobile phone than a toilet.(1,2,3) Every day, on our way to work or school or play, we encounter local water supplies, subconsciously noting their health. Could improving water quality be as simple as snapping a photo on your smart phone?

Creek Watch was developed by IBM research – Almaden, in consultation with the California Water Resources Control Board’s Clean Water Team, to empower citizen scientists to observe and monitor the health of their local watersheds. According to Christine Robson, an IBM computer scientist who helped develop Creek Watch, “Creek Watch lets the average citizen contribute to the health of their water supply – without PhDs, chemistry kits and a lot of time.”

Creek Watch ScreenshotWatersheds, land where all the water in creeks and streams drain into the same aquifer, river, lake, estuary or ocean, surround us. Conservation biologist Erick Burres of California’s Citizen Monitoring Program: The Clean Water Team explains, “Creek Watch as a learning tool introduces people to their streams and water quality concepts.”

Once the free iPhone application is downloaded, citizen scientists are asked to take a photo of their local waterway and answer three simple questions: What is the water level? (Dry? Some? Full?) What is its rate of flow? (Still? Slow? Fast?) And, how much trash is there? (None? Some? A lot?) The photo, GPS tag, and answers are then uploaded in real-time to a central database accessible to water experts around the world. Water resource managers track pollution, develop sound management strategies for one of our most valuable resources, and implement effective environmental stewardship programs.

Since its launch in November 2010, over 4000 citizen scientists in 25 countries have monitored creeks and streams, providing invaluable information to over-extended water resource managers; water quality data that would otherwise be unavailable. Watershed biologist Carol Boland is using this data to prioritize pollution cleanup efforts in San Jose, California. Similarly, local citizen scientists are comparing their observations to previous years as well as data collected around the world on the Creek Watch map to help inform local voluntary stewardship programs.

Creek Watch is increasing global awareness about watersheds and environmental protection. This is just the beginning. Future applications will allow citizens to monitor every aspect of their surroundings – from urban services to wildlife distribution, noise pollution to air quality and even global warming; in order to solve some of the biggest challenges of our day.

Join thousands of citizen scientists monitoring our planet’s water supply as you head to work, school, and play this week. Could your picture save a thousand streams?


Photo : IBM Research

Resources:
1. Estimated with data from WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation. (2012). Progress on Sanitation and Drinking-Water, 2012 Update.
2. International Telecommunication Union (ITU). (2011). The World in 2011 ICT Facts and Figures.
3. United Nations Population Fund (UNFPA). (2011). State of World Population 2011, People and possibilities in a world of 7 billion.

Dr. Melinda T. Hough is a freelance science advocate and writer.  Her previous work has included a Mirzayan Science and Technology Graduate Policy Fellowship at the National Academy of Sciences (2012), co-development of several of the final science policy questions with ScienceDebate.org (2012), consulting on the development of the Seattle Science Festival EXPO day (2012), contributing photographer for JF Derry’s book “Darwin in Scotland” (2010) and outreach projects to numerous to count.  Not content to stay stateside, Melinda received a B.S in Microbiology from the University of Washington (2001) before moving to Edinburgh, Scotland where she received a MSc (2002) and PhD (2008) from the University of Edinburgh trying to understand how antibiotics kill bacteria.  Naturally curious, it is hard to tear Melinda away from science; but if you can, she might be found exploring, often behind the lens of her Nikon D80, training for two half-marathons, or plotting her next epic adventure.

Monitoring Water Quality

By September 5th, 2013 at 12:09 am | Comment

This post is part of this week’s  featured projects about water quality monitoring. Take a look!

Clean water. We all need it. It is necessary for human health, food security, economic growth, and preservation of natural habitats. Sadly, human activity often threatens water quality. Tracking water quality is a crucial step is maintaining safe water. It is also a huge effort.

Across the nation, individuals volunteer their time to monitor the waters in their local streams, bays and waterways. Monitoring activities include testing water chemistry, species surveys, physical assessments of watershed characteristics and surrounding habits, among others. The data collected enable researchers, policymakers, watershed organizations and local citizens to understand how our activities affect water quality, an important step learning how to protect these valuable resources.

With so many individual groups, understanding and implementing training and testing is a challenge. Recognizing this, the Extension Volunteer Monitoring Network was established. By increasing support and communication between groups, the hope is to build a cohesive “best practices” handbook for current and future groups. The network has made a significant push to help groups to get started, and to build the capacity of existing groups. Already, their website is rich with resources on training guides, equipment suggestions, to validation studies which individual groups can use to grow and develop their efforts.

Most recently, the project launched a completely updated online directory of volunteer water monitoring programs in the United States. Their directory map provides links to over 400 programs which represent 1800 different water monitoring initiatives. All programs listed were contacted to ensure they were still active and previously unlisted programs were added as well. The website also has a list of the monitoring programs.

Here at SciStarter, we have a number of water-related programs that are certainly worth checking out. Here is a small sample:

Creek Freaks – Participants gather information on stream health, posting the information on an interactive map.

Great Lakes Environmental Monitoring – Help monitor water quality around the Great Lakes.

Wading for Water Sticks – Volunteers study water sticks insects and their water environments.

Marine Debris Tracker – A mobile app that tracks debris along your local coastline or waterway.

SeaNet – Volunteers measure the effects of offshore developments on seabirds

Secchi Dip-In – Annually in July, participants are asked to take a transparency measurement in a local waterway. (Deadline for this year was July 21.)

To browse over 600 active citizen science projects, visit SciStarter’s project finder.


Carolyn Graybeal holds a PhD in neuroscience from Brown University. She is a former National Academies of Science Christine Mirzayan Science & Technology Policy Fellow during which time she worked with the Marian Koshland Science Museum. In addition the intricacies of the human brain, she is interested in the influence of education and mass media in society’s understanding of science.

Photo: www.dec.ny.gov

The Secchi Dip-In

By July 20th, 2013 at 11:57 am | Comment

Water Testing http://toxics.usgs.gov/photo_gallery/aml_page3.html

Calling all water monitoring groups! It is time for the annual Secchi Dip-In. From now until July 22, volunteer and professional water monitoring groups are being asked to take transparency measurements in a local body of water.

Secchi DiskA secchi disk is a common tool for measuring water turbidity, or water cloudiness. Turbidity is caused by small particles suspended in the water and is a reflection of water quality. To take turbidity measurements, on a calm and bright day the user lowers the disk into the water until the disk is no longer visible. The depth of the disk is used to calculate turbidity. Land erosion from construction or mining, pollution run-off or increases in algae all lead to higher turbidity.

Started in 1994 at Kent State University, Ohio, the Dip-In always takes place during the first few weeks of July. Participants only have to take one transparency per body of water with their secchi disk. The project helpfully provides links for purchasing disks if you do not already have one.

While project organizers prefer that measurements are taken during the “official” dip-in period, participants are welcome to add data from anytime of the year as well as past years. Currently over 2,000 water bodies are being tracked, most of which are in North America. The data are accessible to anybody interested.

In addition to transparency measurements, participants are asked to give their general impressions of the water quality as well as the area’s general aesthetics and recreational properties. These qualitative data help project researchers ascertain the potential sources affecting water quality.

To learning more or to participate, visit  Secchi Dip-In.

—–

Find other environmental projects (and over 600+ other citizen science projects) using our Project Finder.

Photo: USGS.gov

Dr. Carolyn Graybeal earned her PhD in neuroscience from Brown University in partnership with the National Institutes of Health. After graduating, she became a Christian Mirzayan Science & Technology Policy Fellow with the National Academies of Science where she had the opportunity to immerse herself in the policy side of science. In addition the human brain, she is interested in the influence of education and mass media in society’s understanding of science. Originally from California, she is learning to identify the four seasons of the East Coast and is getting pretty good at it.

Are you up to the (water) challenge, today?

By September 18th, 2012 at 10:56 am | Comment

When you wake up in the morning and start your daily routine—take a shower, brush your teeth, cook breakfast—do you ever stop to wonder where all that water you’re using comes from? It’s availability (or lack thereof) is certainly not a common worry in the United States, where as of 2005 (the latest assessment of national water use conducted by the U.S. Geological Survey) about 86 percent of the population relies on public water supplies for household use. Turn a faucet handle, and water, the world’s most precious, life-giving resource, is simply there, ready to cool us or clean us or quench us of our thirst, wherever we need it, whenever we want it.

Courtesy of Water Environment Federation

Courtesy of Water Environment Federation

But for how much longer? Climate change, pollution and unprecedented global demand are already threatening the world’s water supply according to a United Nations World Water Development Report released earlier this year. (SciStarter partnered with Discover Magazine, the National Science Foundation and NBC Learn to explore the Future of Water as part of our Changing Planet series.)

In response to these challenges, two international nonprofit organizations, the Water Environment Federation (WEF) and the International Water Association (IWA), partnered up to launch a challenge of their own.

Today, September 18, is World Water Monitoring Day, a key component of the broader World Water Monitoring Challenge that runs from March 22 to December 31. Thousands of people from around the world will use low cost monitoring kits to test their local water bodies for the basic indicators of watershed health–temperature, acidity, turbidity, and dissolved oxygen—and enter their results into a shared online database. It’s not too late to get involved. The program’s administrators hope that participants will not only learn which rivers, lakes, streams and reservoirs supply their communities but also become aware of the unique combination of environmental challenges each one faces.

Courtesy of Water Environment Federation

Courtesy of Water Environment Federation

“These are issues the next generation will have to cope with,” said Lorien Walsh of the Water Environment Federation. “The water we drink today is the same water people have been drinking for thousands of years. It is a finite resource, and we can’t use it if it’s not clean.”

In 2011, over 300,000 people from nearly 80 countries participated in the World Water Monitoring Challenge. Taking clean water for granted might be common in the United States, but it is a luxury people can ill afford in the developing world, where three million people, most of them women and children, die from water-borne illnesses like cholera every year.

“Kids in Kansas can see the data they collected and compare it to the data collected by kids in the Congo,” said Walsh. “There’s a stark difference.”